BIOMOD日本大会2019のアブストラクト(Abstract for BIOMOD Japan Meeting 2019)


In recent years, DNA Origami is attracting attention. It is an innovative technology that allows free design and creation of desired nanoscale structures. DNA Origami is expected to be applied to various purposes such as molecular robots. One interesting example of molecular robots is “Nanocars”.

Here, we propose a Nanocar made with DNA Origami technique. First, we designed DNA sequence for one-wheeled car body and will make DNA Origami based on this design. Next, two of the car bodies will be connected by appropriate staple strands to create “DNA Origami Bicycle”. Finally, staple strands with azobenzene moieties will be introduced to crosslink the tire and shaft. With this azobenzene-tethered DNA, formation and dissociation of a DNA duplex can be reversibly photo-regulated by cis–trans isomerization of the azobenzene. By using this mechanism, we can achive control of driving.

In the future, we will challenge car racing by DNA nanocar.


Swarm Robotics consists of simple robots and their communication system, and it is gathering attention for its flexibility and adaptability to environment which cannot be achieved by one robot.

Here, we aim to achieve nano-scale swarm robot systems with two components: 1. reaction fields derived from ON-OFF DNA concentration condition using polymerase, exonuclease and nickase 2. swarm robots consist of beads with DNA strands which react the DNA concentration situations. The behavior of swarm robots involves the aggregation of DNA-modified beads by a linker DNA which is synthesized only when the field DNA is ON.

The strong points in our project are simplification and downsizing of high sensing technology in a moderate condition by a bottom-up approach.

These can be applied to molecular sensing such as visualization and simplification in medical examinations.

東北大(Team Sendai)

A recent study has succeeded in making 100 times-swelling hydrogel by DNA-crosslinked acrylamide in which the crosslink extends linearly by incorporating DNA hairpins through Hybridization Chain Reaction (HCR).

Although the method achieved an extraordinary swelling rate, the gel cannot shrink.

It just stops swelling when it runs out of DNA hairpins.

Here, we propose a novel design of DNA-linked hydrogel that can not only extend but shrink, like a muscle fiber. In the above swelling gel by HCR, hairpin DNAs are incorporated at one end of linking complex which allows linear elongation of the crosslink. Based on the same design, we add a novel shrinking mechanism which removes DNA from the other end of the complex. We call it “reverse hybridization chain reaction(RHCR)” .

In the future, our DNA hydrogel muscle may contribute to the development of highly designable metamorphic robots.


Enzymes are essential substance for all living. For example, the reason why we can take in nutrients through meals is that what we take in from the mouth is broken down by an enzymatic reaction and can be absorbed. If we don’t have any enzymes, we can’t get nutrients.

However, enzymes have some weak points. The one is not to happen frequently enzyme reaction because active center is so small compared the size of enzyme molecule. We came up with a new machine that does the activity like active center of enzymes increased responding. The way is using two DNA origami connected each other on a side. The one is bound a substrate and the other is bound a catalyst, and the two molecules react forcibly by folded two DNA origami. We dream this machine can make two molecules they aren’t specific each other react effectively.




As a related event of BIOMOD jamboree at San Francisco in the end of October, BIOMOD Japan Meeting takes place in the end of August. Please use it as an opportunity to prepare a webpage and practice oral presentation. Taking the feedback from judges, we hope you can do your best at the jamboree in San Francisco. Depending on the ranking of Japan meeting, Japanese teams are eligible for travel award. Please look the following detail information.

名称(Name):BIOMOD日本大会2019 (BIOMOD Japan Meeting 2019)
日付(Date):8月31日土曜日(31st of August, Saturday)
場所(Place):東京大学生産技術研究所 (Institute of Industrial Science, The University of Tokyo)
会場(Room):S棟プレゼンテーションルーム (Presentation room, S building)

主催(Sponsorship):SICE知能分子ロボティクス調査研究会 (The SICE research committee for Intelligent Molecular Robotics)
共催(Co-sponsorship):JST分子ロボット倫理研究会(SIG Molecular Robotics Ethics, JST)
共催(Co-sponsorship):東京大学生産技術研究所 藤井研究室 (Applied Microfluidic Systems Lab, The University of Tokyo)

参加資格(Who can join)
Teams who are participating the jamboree at San Francisco or in the waiting list can join the BIOMOD Japan Meeting.

登録費、参加費(Registration fee, participation fee):無料(Free)
Please come to the conference place at your own expense.
Social gathering costs some money.

7/19(金)(19th of July, Friday):エントリー締め切り (Entry due)
8/17(土)(17th of August, Saturday) 23:59: アブストラクト締め切り(Abstract due)
8/24(土)(24th of August, Saturday)23:59 :ウェブページ締め切り(Webpage due)

8/31スケジュール(Schedule of 31st of August)
13:30-14:30 設営、プロジェクター確認(Prepare, check projector)
14:30-14:33 中茎先生挨拶(Greeting from prof. Nakakuki)
14:33-14:35 ルール説明(Rule)
14:35-15:00 関西大(TEAM KANSAI)
15:00-15:25 東大(TEAM TOKYO)
15:25-15:40 休憩(Break)
15:40-16:05 東北大(Team Sendai)
16:05-16:30 九工大(YOKABAIO)
16:30-16:35 集合写真(Group photo)
16:35-16:50 休憩(Break)
16:50-17:10 小長谷先生、倫理(Ethics from prof. Konagaya)
17:10-17:20 表彰式(Awards)
17:20-17:25 村田先生総評(Closing remarks from prof. Murata)
17:25- 解散(End)

18:00- 懇親会(Social gathering)
Ape (Restaurant in the campus of Institute of Industrial Science)
We collect fee of the social gathering from each team at the conference.

Send the following entry information to Kawamata before the deadline.
Name of the team
Name and mail address of the student leader
Name and mail address of the faculty mentor
Name and mail address of the graduate student mentor (if any)
Request of the order to present (if you have any unavoidable reason)

Send the abstract to Kawamata before the deadline.
150 words max in English.

Send the URL of the webpage to Kawamata before the deadline, and do not edit after that.

口頭発表・質疑応答(Oral presentation and question and answer):25分(25 minutes)
10 minutes of presentation, 14 minutes of question and answer, 1 minute for changing

Judges use the same point system of BIOMOD competition to evaluate the webpage and the oral presentation.

Judges send their scores of the webpage to Kawamata before 30th of August (Friday).

Judges send their scores of the oral presentation to Kawamata during the break after the presentation on 31st of August (Saturday).

川又のメールアドレス(Mail address of Kawamata): このメールアドレスは、スパムロボットから保護されています。アドレスを確認するにはJavaScriptを有効にしてください

Japanese teams are eligible for travel award depending on their ranking.
1位:3名分旅費相当 (1st place : flight cost of around three students)
2位:2名分旅費相当 (2nd place : flight cost of around two students)
3位:1名分旅費相当 (3rd place : flight cost of around one student)
4位:1名分旅費相当 (4th place : flight cost of around one student)
Note that there is an upper limit and conditions.

プログラムオーガナイザー(Program organizer):川又 生吹 (Ibuki Kawamata)
ローカルオーガナイザー(Local organizer):奥村 周 (Shu Okumura)、Anthony Genot


7 / 10 ページ